[Eoas-seminar] EOAS Colloquium this Friday at 3:30 in Car 101

eoas-seminar at lists.fsu.edu eoas-seminar at lists.fsu.edu
Mon Nov 26 16:04:26 EST 2018


Dear all,

Dr. O’Neill has time available to meet with faculty/staff/students on Friday - please contact Allison Wing (awing at fsu.edu<mailto:awing at fsu.edu>) if you’d like to meet with her.  Her website is https://storms.stanford.edu. In addition to hurricane dynamics, Dr. O’Neill is interested in other types of severe weather events and their connection to a changing climate. She also has done work on geophysical fluid dynamics on giant planets.

-Allison Wing

——————————————————
Allison Wing, Ph.D.
Assistant Professor
Earth, Ocean and Atmospheric Science
Florida State University
awing at fsu.edu<mailto:awing at fsu.edu>



On Nov 26, 2018, at 2:43 PM, eoas-seminar at lists.fsu.edu<mailto:eoas-seminar at lists.fsu.edu> wrote:

Our last EOAS Colloquium of the semester will be given by Dr. Morgan O'Neill of Stanford University, this Friday at 3:30 in CAR 101:

Title: An inertial oscillation in simulated high-latitude hurricanes

Abstract:
Atmospheric convection acts in the net as a thermally direct heat engine across many scales - from a single cumulus cloud, to a tropical cyclone (TC), to the general circulation. It has been shown that TCs operate as a heat engine particularly effectively, producing “about 70% as much kinetic energy as a comparable Carnot cycle (Pauluis and Zhang 2017, JAS)” in the eyewall of a simulated Hurricane Edouard (2014). Outflowing air then slowly subsides as radiative cooling to space balances diabatic warming, a process that does not consume any work. Nevertheless, some literature has invoked the possibility of occasional ‘mechanical subsidence’ or ‘forced descent’ in the TC outflow region in the presence of high inertial stability, which would be a thermally indirect circulation - much like the well-known TC eye. Such mechanical subsidence has not before been observed, measured or characterized.

I present results from idealized axisymmetric TC simulations that show a previously undescribed inertial oscillation at large radii and altitudes. It measurably occurs only in storms of latitude ~22 degrees and poleward, and has the curious property of bifurcating a portion of the overturning circulation into two distinct cells. This behavior is similar to that seen in a diurnal oscillation of recent three-dimensional TC simulations, but occurs as a strong function of inertial frequency instead. This radial oscillation is in contrast to the presumed forced descent model, and I hypothesize that this is because inertial stability provides less resistance than buoyant stability, even in highly inertially stable environments.  I discuss implications for the heat engine model of a TC and compare it to a better understood overturning flow: the general circulation of the atmosphere.

-
_______________________________________________
Eoas-seminar mailing list
Eoas-seminar at lists.fsu.edu<mailto:Eoas-seminar at lists.fsu.edu>
https://lists.fsu.edu/mailman/listinfo/eoas-seminar

-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.fsu.edu/pipermail/eoas-seminar/attachments/20181126/d34ce17e/attachment.html>


More information about the Eoas-seminar mailing list