<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
<body>
<div style="font-family: Tahoma, Geneva, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);" class="elementToProof ContentPasted0">
<span style="font-size: 14pt;"><b><i>"CS4ML: A general framework for active learning with arbitrary data based on Christoffel functions"</i></b></span>
<div><br class="ContentPasted0">
</div>
<div class="ContentPasted0"><span style="font-size: 14pt;"><b>Ben Adcock</b></span></div>
<div class="ContentPasted0"><span style="font-size: 10pt;">Professor of Mathematics,</span></div>
<div class="ContentPasted0"><span style="font-size: 10pt;">Simon Fraser University</span></div>
<div><br class="ContentPasted0">
</div>
<div class="ContentPasted0">Please feel free to forward/share this invitation with other groups/disciplines that might be interested in this talk/topic.
<b>All are welcome to attend.  </b></div>
<div><br class="ContentPasted0">
</div>
<div class="ContentPasted0">NOTE: In-person attendance is requested. Zoom access is intended for external (non-departmental) participants only.  
</div>
<div><br class="ContentPasted0">
</div>
<div class="ContentPasted0"><b>https://fsu.zoom.us/j/94273595552 </b></div>
<div class="ContentPasted0">Meeting # <b>942 7359 5552 </b></div>
<div><br class="ContentPasted0">
</div>
<div class="ContentPasted0">Colloquium recordings will be made available here, <a href="https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.sc.fsu.edu%2Fcolloquium&data=05%7C02%7Csc-seminar-announce%40lists.fsu.edu%7C38317a2806c64c8c66a008dc616e1d59%7Ca36450ebdb0642a78d1b026719f701e3%7C0%7C0%7C638492372760346499%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=zMqKkiPTVNOqr76fH2Iz%2F52%2FzggbHIvYwnKnKYLxEoY%3D&reserved=0" originalsrc="https://www.sc.fsu.edu/colloquium" shash="Pu6TMD/l5WC9jpymnllGC0ojZpiqkBQldszUMwYnIKFSGCF7R2QCMqOMvRvi6veioV1dqTrwg5JdHEKE+4fiClrQ77AubZSV0dAEBywCZ0qUqYBb7NmuLtGc63KGH5bETD8sbM9eJPO8dgp+m+j5w2ER6QcKMosxx7t1278P9P8=">
https://www.sc.fsu.edu/colloquium</a></div>
<div class="ContentPasted0"><br>
</div>
<div class="ContentPasted0"><b>Wednesday, Apr 24</b>, 2024, Schedule:  </div>
<div><br class="ContentPasted0">
</div>
<div class="ContentPasted0">* 3:00 to 3:30 PM Eastern Time (US and Canada) </div>
<div class="ContentPasted0"> Nespresso & Teatime - 417 DSL Commons </div>
<div><br class="ContentPasted0">
</div>
<div class="ContentPasted0"><b>* 3:30 to 4:30 PM Eastern Time (US and Canada) </b>
</div>
<div class="ContentPasted0"><b> Colloquium - 499 DSL Seminar Room </b></div>
<div><br class="ContentPasted0">
</div>
<div class="ContentPasted0"><b>Abstract: </b></div>
<div>Active learning is an important concept in machine learning, in which the learning algorithm can choose where to query the underlying ground truth to improve the accuracy of the learned model. As machine learning techniques come to be more commonly used
 in scientific computing problems, where data is often expensive to obtain, the use of active learning is expected to be particularly important in the design of efficient algorithms. In this talk, I will describe a general framework for active learning in regression
 problems. This framework extends the standard setup by allowing for general types of data, rather than merely pointwise samples of the target function. This generalization covers many cases of practical interest, such as data acquired in transform domains
 (e.g., Fourier data), vector-valued data (e.g., gradient-augmented data), data acquired along continuous curves, and multimodal data (i.e., combinations of different types of measurements). The framework considers random sampling according to a finite number
 of sampling measures and arbitrary nonlinear approximation spaces (model classes). I will introduce the concept of generalized Christoffel functions and show how these can be used to optimize the sampling measures. I will then describe how this leads to near-optimal
 sampling strategies in various important cases. This talk focuses on applications in scientific computing, where, as noted, active learning is often desirable, since it is usually expensive to generate data. I will conclude by demonstrating the efficacy of
 this framework for gradient-augmented learning with polynomials, Magnetic Resonance Imaging (MRI) using generative models and adaptive sampling for solving PDEs using Physics-Informed Neural Networks (PINNs).<br>
</div>
<div><br class="ContentPasted0">
</div>
<div class="ContentPasted0">Additional colloquium details can be found here, </div>
<a href="https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.sc.fsu.edu%2Fnews-and-events%2Fcolloquium%2F1802-colloquium-with-ben-adcock-2024-04-24&data=05%7C02%7Csc-seminar-announce%40lists.fsu.edu%7C38317a2806c64c8c66a008dc616e1d59%7Ca36450ebdb0642a78d1b026719f701e3%7C0%7C0%7C638492372760346499%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=pvzNPDu29hJpEXKcQB9GGdNESG%2BjCYGQVsrYnTrGsko%3D&reserved=0" originalsrc="https://www.sc.fsu.edu/news-and-events/colloquium/1802-colloquium-with-ben-adcock-2024-04-24" shash="YqanRKV2nkP+pxPiZstiZvtWuplRzIzvDI8TFbSstDVWSgcUwqjkrxlObV3az/zMBVP2/FKupTujfJTPPoe4VVyVCRuN6j2jrOT1NTgq8QrCrf99gKRUssXAR34k6KIC57RBV7IV+fGYJeJPX6c5IiJ9rvNCbOS6ofJPbVjJjno=">https://www.sc.fsu.edu/news-and-events/colloquium/1802-colloquium-with-ben-adcock-2024-04-24</a><br>
</div>
</body>
</html>